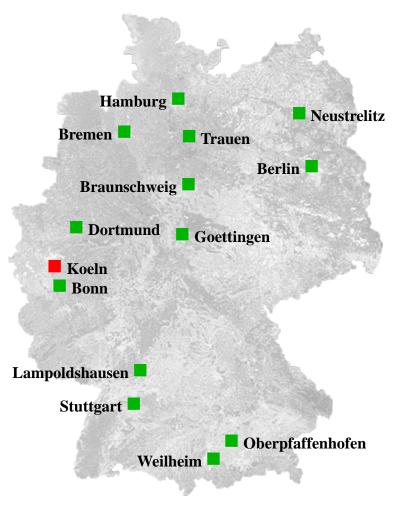


Fly-by-Wireless (FBWSS): Benefits, risks and technical challenges

CANEUS Fly-by-Wireless Workshop Orono, ME, USA 08/24/2010

Dipl.-Ing. Oroitz Elgezabal <u>oroitz.elgezabal@dlr.de</u>

German Aerospace Center (DLR), Institute of Flight Systems



DLR Locations and Employees

6500 employees across 29 research institutes and facilities at

14 sites.

Offices in Brussels, Paris and Washington.

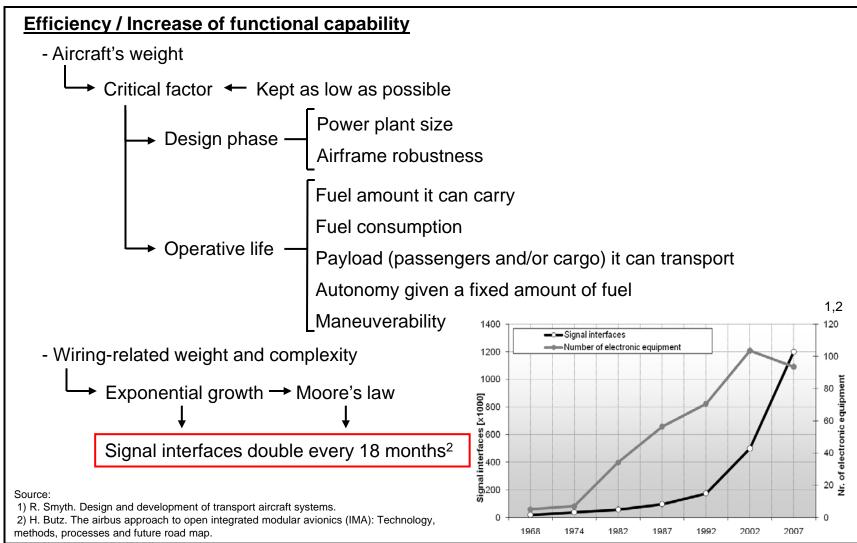
Research Areas and Activities

- Research air vehicles
- Cockpit simulators
- → Tower simulator
- Compressor, combustion chamber and turbine test beds
- → Autoclaves
- Material and structural test facilities
- → Ground vibration test facility
- → Wind tunnels*
 - * Predominantly under the auspices of German-Dutch Wind Tunnels (DNW)

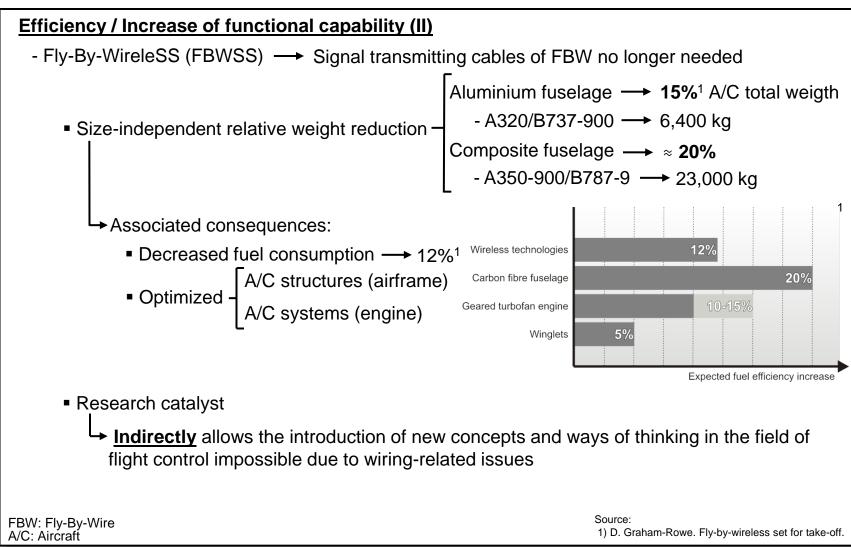
Index

- Basic considerations
- Benefits
- Risks
- Conceptual wireless flight control system
- System specification
- -Technical challenges

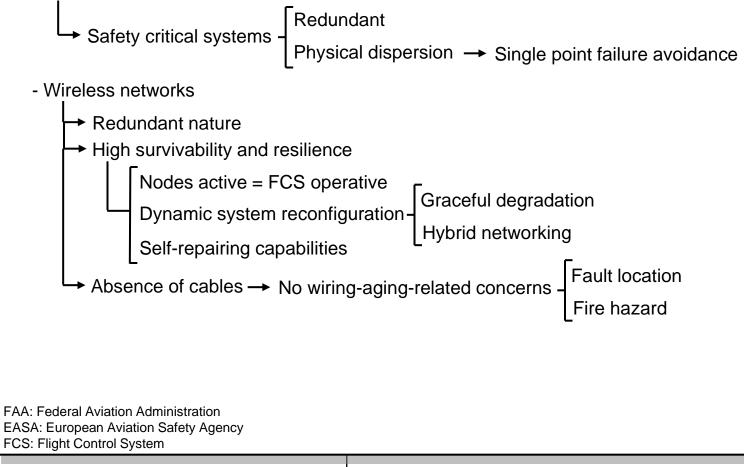
Basic considerations


- Does it deserve/is it reasonable to incorporate wireless technologies in the next-generation aircraft for flight control purposes?

- Three different parameters to keep in mind at the time of incorporating a new technology on aircraft
 - Efficiency/increase of functional capability Dependability — Reliability / Availability
 Safety
 Security


Cost — Design
 Production
 Operation cost

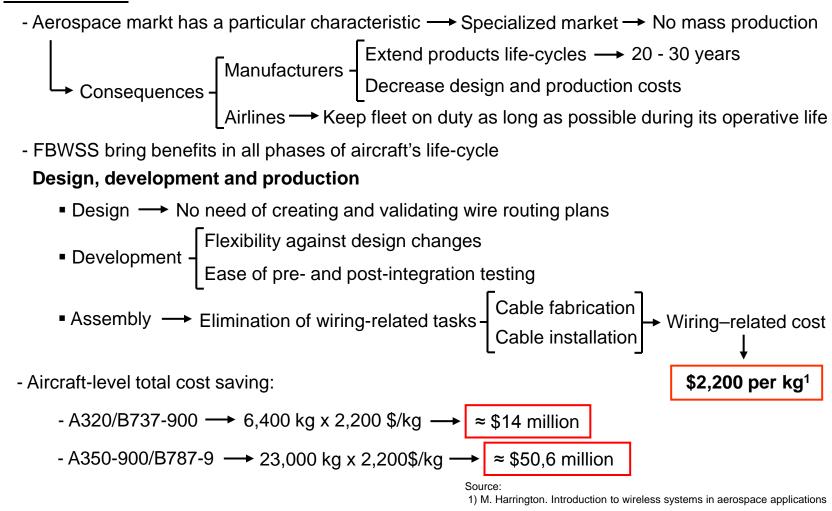
- Are wireless technologies feasible for airborne safety-critical applications?
 - Which requirements must wireless technologies fulfil in order to be feasible?
- Is a full-wireless flight control system without a backup system feasible?
 - If not, is there any technology for back up that does not devaluate the possible improvements derived from full-wireless flight control?



Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

FBWSS: Benefits, risks & technical challenges > Oroitz Elgezabal > CANEUS FBW10 > 08/24/2010

<u>Safety</u>


- Civil aviation authorities (FAA & EASA) impose high requirements of safety and reliability on aircrafts

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Time and cost

Time and cost (III)

Withdrawal from service

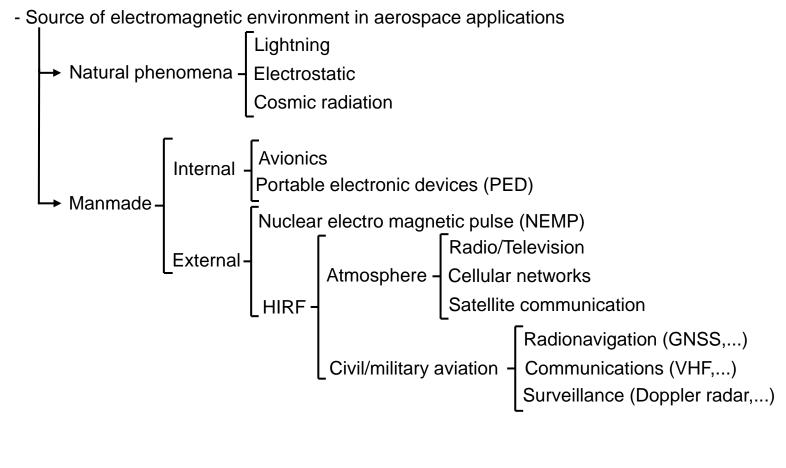
- Storage
- Recycling

Correct disposal of environment/health threatening substances (Hg, Pb...)
 Challenges - Construction

Classification and proper separation of materials

→ Benefits → No wiring-related activities - Reduction of material mass to be recycled Reduced recycling tasks

Index


- Basic considerations
- Benefits

- Risks

- Conceptual wireless flight control system
- System specification
- Technical challenges

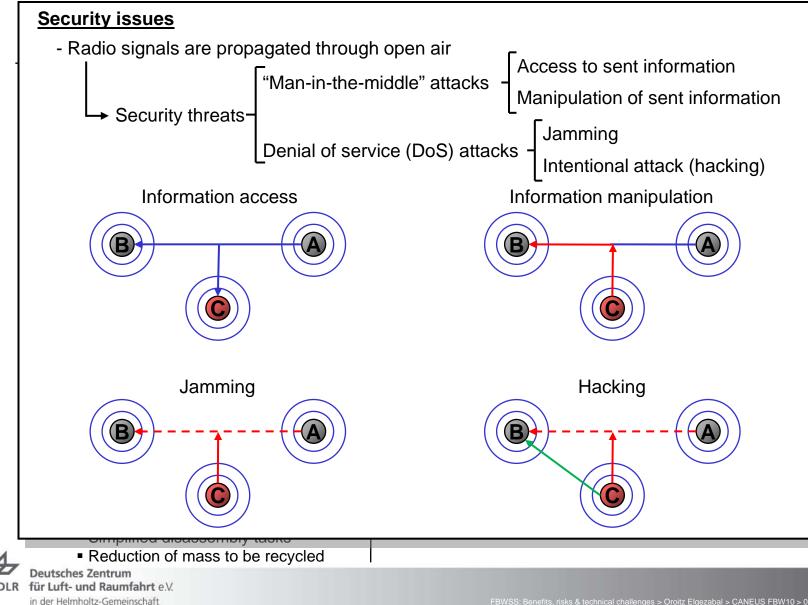
Electromagnetic susceptability

Reduction of mass to be recycled

Deutsches Zentrum
 Gür Luft- und Raumfahrt e.V.
 in der Helmholtz-Gemeinschaft

Electromagnetic susceptability (II)

- Effects of Electro magnetic interferences on wireless communications
 - Cochannel interference


 interfering signal with the same carrier frequency as the information signal
 - the one of information signal
 - Intermodulation interference

 Interfering signals created by nonlinear components like transistors in analog communication systems
 - Intersymbol interference
 Interfering signal caused by multipath propagation causing different copies of the same symbol reaching at the receiver at different times
 - Near End to Far End Ratio Interference → interference signal from a close device that overrides the signal between base station and a device located away from it
- Derivated hazards
 - Quality of service (QoS) degradation → Increase of bit error rate (BER)

 - Network collapse

Reduction of mass to be recycled ür Luft- und Raumfahrt eV in der Helmholtz-Gemeinschaft

Electric power supply

- Wireless transmissions' peak power during connection's establishment
 - Multiple connections established periodically = High electric power consumption
- Need of power supply at nodes location

→ Not always possible/desirable → Devaluates benefits associated to FBWSS

Reduction of mass to be recycled

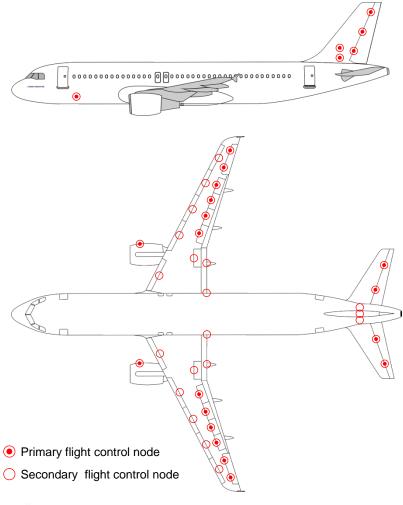
Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- Comparison of FBWSS benefits and risks

Advantages	Disadvantages
 Efficiency Weight reduction which implies: Decreased fuel consumption Increased payload capacity Increased flight autonomy New/increased capabilities (indirect) Dynamically reconfigurable FCS Safety Systems self-redundant nature High survivability and resilience Single-point-of-failure avoidance Self-repairing capabilities No wiring-aging-related problems Cost No need of wire routing plans Flexibility against design changes No wiring-related assembly tasks Maintenance, reparation and overhaul Ease of system maintenance Higher system integrity Reduced out-of-operation times Increased scalability Withdrawal from service Simplified disassembly tasks Reduction of mass to be recycled 	Electromagnetic susceptability - Quality of service degradation - Increase of bit error rate - Decreased data transmission rate - Violation of deadlines - Network collapse Security issues related with: - Confidentiality of transmitted data - Rejection capabilities against intrusions - Survivability against jamming signals Power supply - Increased power consumption - Need of power supply at node's location - Not always possible/desirable

Index


- Basic considerations
- Benefits
- Risks

- Conceptual wireless flight control system

- System specification
- Technical challenges

Conceptual wireless flight control system

für Luft- und Raumfahrt eV

in der Helmholtz-Gemeinschaft

- Flight control

Primary flight control •

Roll → Ailerons/Roll spoilers

Axis of motion → Pitch → Elevators
 Yaw → Rudder/Yaw dampers

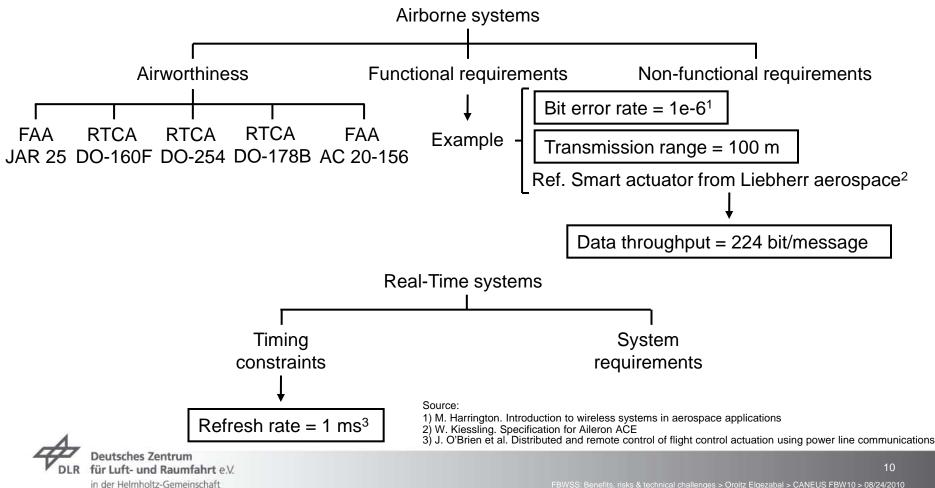
- Full authority digital engine control (not in the current work)
- Flight computers
- Secondary flight control O
 - Trimmable Horizontal Stabilizer (THS)
 - Inner spoilers
 - Inner/Outer flaps
 - Slats
 - Airbrakes

System specification

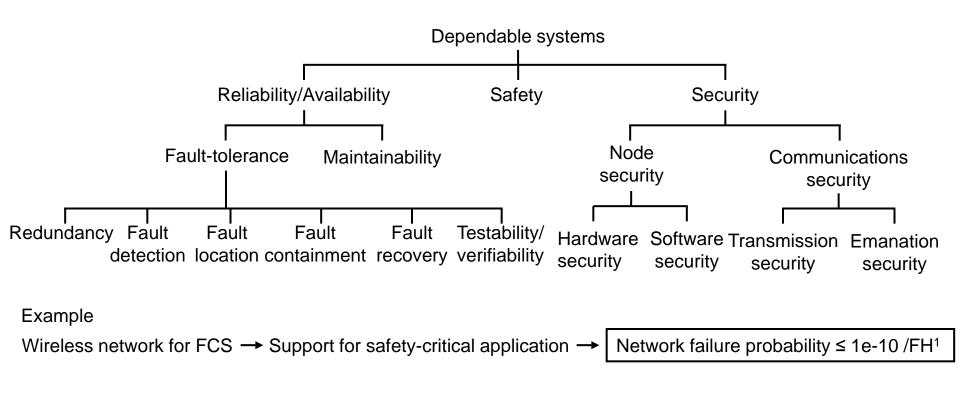
- Development of requirements in the problem domain
 - Requirements that systems must fulfil in order to accomplish the desired function

→ Conceptual description of the desired system

Airborne, real-time, dependable, wireless distributed sensor and actuator network


- Development of requirements related to:
 - Airborne systems
 - Real-time systems
 - Dependable systems
 - Wireless distributed sensor and actuator networks (WDSAN)

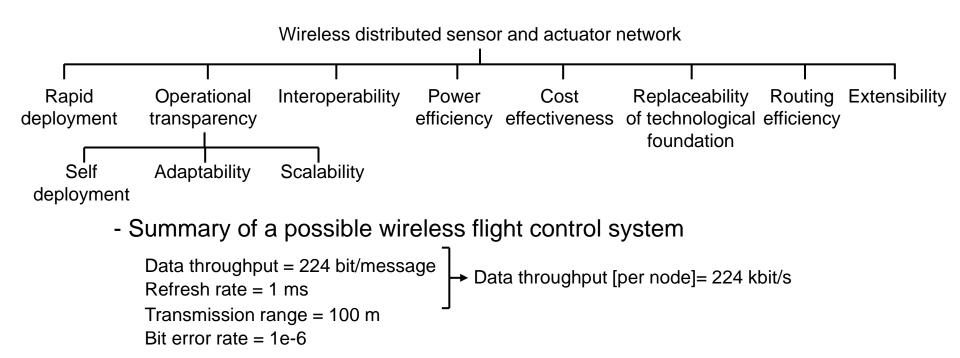
9


System specification (II)

- Development of requirements in the problem domain

System specification (III)

- Development of requirements in the problem domain



FCS: Flight Control System

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Source: 1) J. Rushby. A comparison of Bus Architectures for Safety-Critical Embedded Systems

System specification (IV)

- Development of requirements in the problem domain

Index

- Basic considerations
- Benefits
- Risks
- Conceptual wireless flight control system
- System specification
- Technical challenges

Technical challenges

- Assessment of the technology to serve as wireless transmission medium

- Physical layer of the ISO OSI standard
- Radio Frequency (RF)

Which frequency spectrum should be used?

Spectrum allocation Vs Spectrum reuse

ISM bands Vs Protected spectrum

Worldwide availability Vs Interference-free/Secure spectrum

COTS systems Vs Proprietary systems

- Free space optics (FSO) → Wireless optical transmission → High inmunity against EMI

 - → Line-of-sight FSO (LoS FSO) → Direct optical connection
 → Non-line-of-sight FSO (NLoS FSO) → Indirect optical connection
- through the use of magnetic fields ISO: International Organization for Standardization

OSI: Open System Interconnection

COTS: Commercial of-the-shelf

EMI: Electro Magnetic Interference

für Luft- und Raumfahrt eV in der Helmholtz-Gemeinschaft

14

Technical challenges (II)

- Assessment of the need of a backup system
 - In order to be able to design a system without the need of a backup system the following questions must be answered:
 - Does the wireless network have a reliability level appropriate enough? → ≤ 1e-10 /FH
 - \rightarrow Does hardware nodes satisfy the imposed reliability requirements?
 - → Does data link fulfil the imposed reliability requirements?

- Can the wireless network reconstruct itself fast enough (MTTR)?
 - ----- Time between network total collapse and delivery of first command after restart
 - Network collapse detection
 - Restart of the transceivers
 - Network construction
 - Command delivery to primary flight control surfaces

If the answer to one of this questions is "NO" then the use of a backup system is MANDATORY

MTTR: Mean Time To Repair

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Technical challenges (III)

-Possible backup systems

Background idea: Availability of wireless technologies cannot be guaranteed. EMI and jamming can make the use of radio frequency link impossible.

- Assumptions:
 - No cable backhaul connecting the nodes of the flight control network
 - No mechanical backup
- **Power Line communications** Data transmission through aircraft's power supply network

No additional systems Reuse of existing infrastructure -High reliable system Wide availability

- Hybrid networking ---- Data transmission through different wireless technologies/standards

 - Reuse of existing infrastructure
 Dissimilar redundancy Robustness against EMI

16

Thank you for your attention

