

Airplane Wireless Sensor Needs

CANEUS Fly-By-Wireless August 24th, 2010

Ethan Owyang Boeing Commercial Airplanes

BOEING COMMERCIAL AIRPLANES

Outline

Wireless Sensing Objectives

Key Application Areas

Typical Wireless Architectures

Challenges & Limitations

Wireless Sensing Objectives

- Reduce cost of installation
- Reduce weight
- Improve modularity
- Enable rapid introduction of new features
- Enable rapid reconfiguration
- With focus on
 - Low data rate applications
 - Eliminating "difficult" wires
 - Non-essential applications

Key Application Areas

- Airplane systems
- Vehicle health monitoring
- Flight Test

Example Wireless Sensing Architecture

Challenges & Limitations

- Power Sources
 - Multi-year primary batteries
 - Energy harvesting
- Sample rate limited by low power requirements
 - Typically combine 10's mW active loads with a few µW sleep modes to achieve 100's µW P_{avg} at 1% duty cycle
- Time correlation between multiple sensors
- Spectrum availability

Sources of Energy Harvesting

Global Spectrum Allocation

239 countries have wildly divergent regulations on

- spectrum allocation
- power levels
- modulations techniques
- testing & registration requirements
- 2.4 GHz most promising globally, but also crowded
- ITU recommendations can take years to implement into law

