Wireless Sensor Architecture for Inflatable Spacecraft Health Management

Fly by Wireless Conference March 27 - 28, 2007 Dallas, TX

NASA Ames Research Center

Richard Alena, Stephen Ellis, Jim Hieronymus, Dougal Maclise, Serdar Uckun

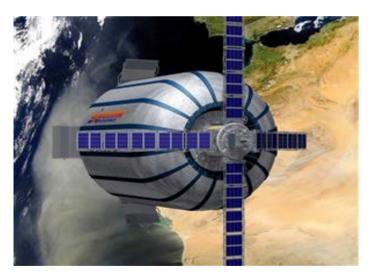
Code TI

Intelligent Systems Division

Code TH

Human Systems Division

TransHab for ISS (1997-2000)


- Four levels
 - Pressurized tunnel
 - Crew health care
 - Crew quarters
 - Wardroom and galley
- Central core
 - Passageway
 - Mechanical support
 - Machinery

Bigelow Genesis I Space Station

- Used NASA TransHab
 concept
- Launched in June 2006
- Successful flight demonstration see photo

QuickTow" and a TPP (LSN) descention are needed to see this plot

Inflatable Structures for Future Mars Transit Vehicles and Habitats

- Inflatable structures can provide superior capability and performance:
 - Increase usable volume
 - Decrease ascent mass and volume
 - Provide superior MMOD protection
 - (radiation protection is an open issue)
- Inflatable structures also require methods to:
 - Allow deployment of subsystems on flexible surfaces
 - Reduce wiring and cabling and piping
 - Provide effective feed through from interior to exterior
 - Monitor for damage or leakage
- Provide improved vehicle/habitat health management
 - Monitor health management of inflatable structure from stowage to full deployment
 - Develop sensors for multiple-layer inflatable structures

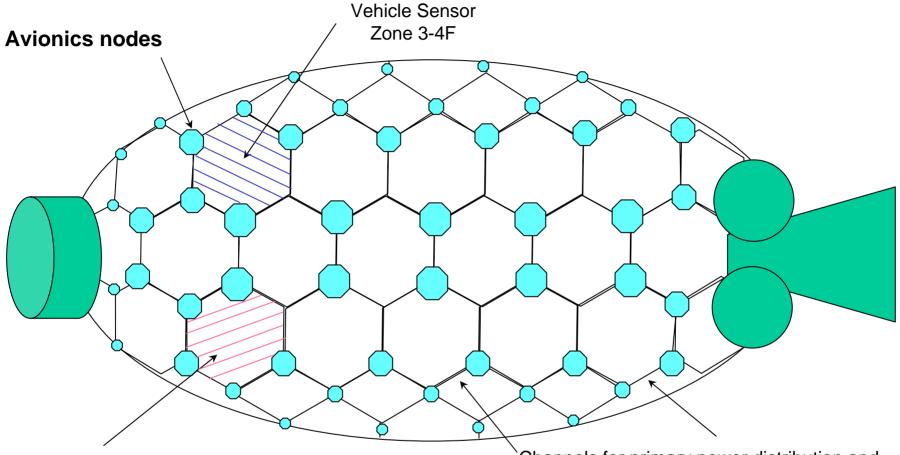
Inflatable Habitats, continued

- Use geodesic dome type construction
 - Minimize central core, maximize inflated volume
 - Provides strength and rigidity
 - Provides "channels" for power, data and thermal control
- Use central core for vehicle attachment, propulsion and machinery
 - Attachment, structural integrity and propulsion all require rigid backbone for major elements
 - Machinery requires proper mounting to absorb structural strain and vibration
 - Minimize central core mass, volume and functional dependencies
- Minimize spacecraft infrastructure requirements by using wireless
 - Wireless networks
 - Wireless power transmission
 - Wireless methods minimize deployment issues!
- Incorporate structural health monitoring into structure
 - Strain sensors, accelerometers
 - Thermal sensors, leak detectors

Conceptual Vehicle Physical Layout

- Central Core is vehicle structural backbone housing all mechanical assemblies
- Other components are distributed within inflatable volume or on inflatable fabric

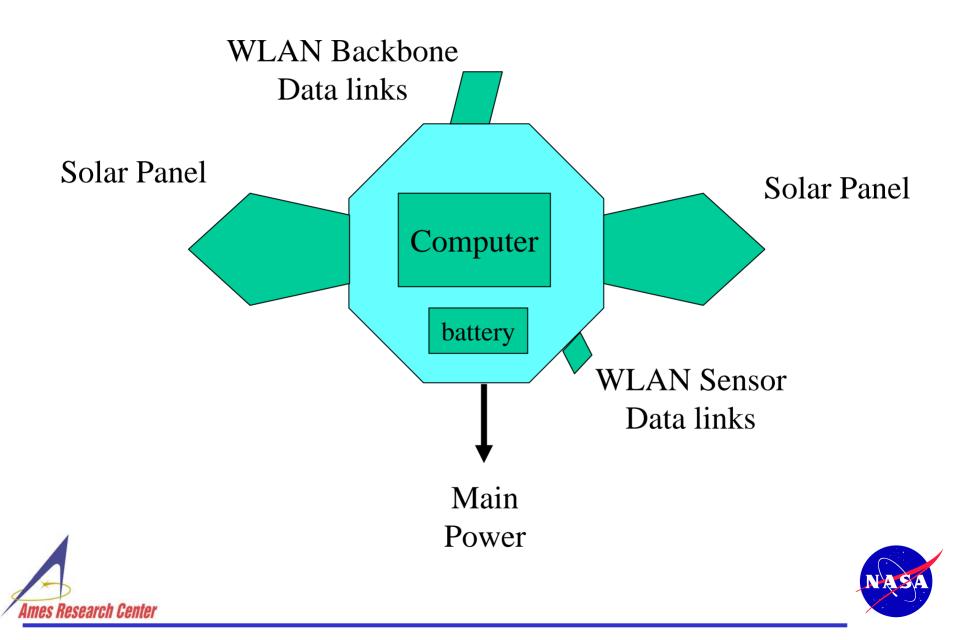
esearch Center


Health Management Challenge

- Develop advanced technology for inflatable spacecraft for flight in 5-10 year time frame
- Integrate advanced structural concepts with innovative distributed modular sensing and subsystems technology
 - Identify appropriate sensors for chosen inflatable fabric technology
 - Develop embedded sensors for inflatable structures
 - Improve wireless methods for reading embedded sensors
 - Provide simple sensor power distribution
 - Minimize spacecraft systems power consumption
- Anticipate future computer and avionics developments
 - Wireless sensor data communications with bounded time latency
 - Advances in wireless networking protocols (e.g., ad-hoc networking)
 - Robust collaborative computational systems
 - High performance and low power consumption
 - Low mass and small package for sensors and avionics

Mars Transit Vehicle Avionics Concept

Flexible Solar Panels embedded in outer skin material Channels for primary power distribution and thermal control infrastructure


Sensors for Inflatable Habitat Health Monitoring

- Internal pressure sensors
- Temperature sensors
- Strain gauges
- Accelerometers for deployment and impact monitoring
- Impedance monitoring for multi-layer fabric
- Acoustic Emission or Ultrasonic leak detection

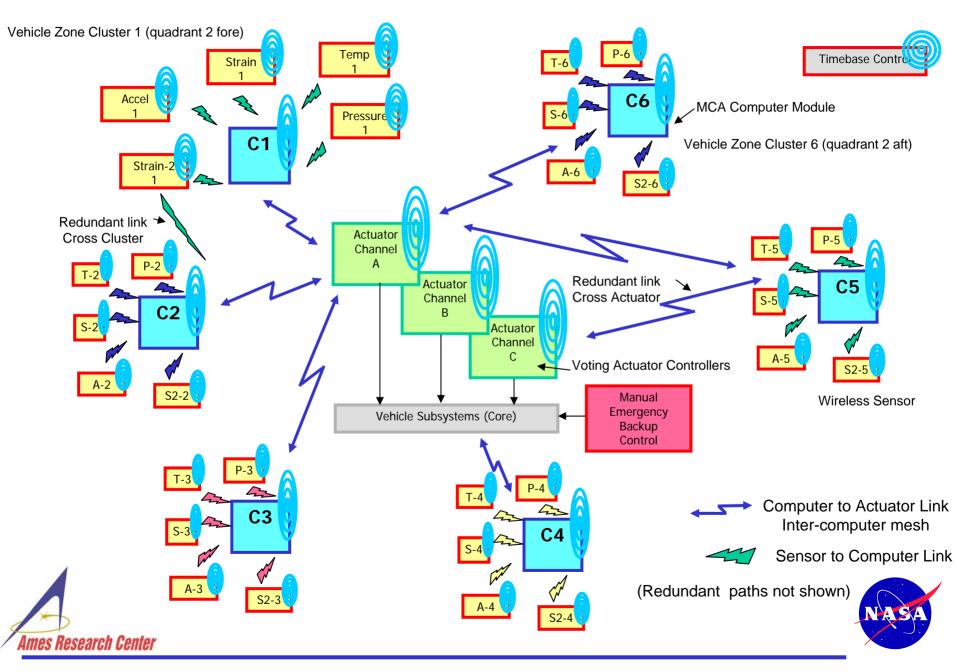
Avionics Node Diagram

Avionics Node Functions

- Management of distributed solar panels providing primary power to spacecraft
- Network management and distribution wired and wireless
 - WLAN hub for multiple wireless sensor associated with vehicle zone management
 - Mesh WLAN between avionics nodes
- Computing power for fault-tolerant Integrated Modular Avionics (IMA)
 - Based on ARINC 653 IMA Standard
 - Highly-redundant computing for vehicle and mission management
 - Use central fault-tolerant actuator modules for critical functions

Heterogeneous Wireless Networks

- Baseline command and control RF network
 - Low bandwidth (Mbps) but high availability
- Optical utility network
 - Provides reliability against EM disruption
 - Requires direct line-of-sight
 - Backup for RF networks
- Wireless high-speed RF network
 - General computing and instrument support
 - Backup for baseline C&C network
- Supplementary short-distance wireless links
 - Support embedded sensors
 - Minimize sensor data communications hardware and overhead
- Wireless links cannot interfere with each other
 - Different frequencies and modulation
- WLAN requires bounded latency
 - Currently not supported by standards

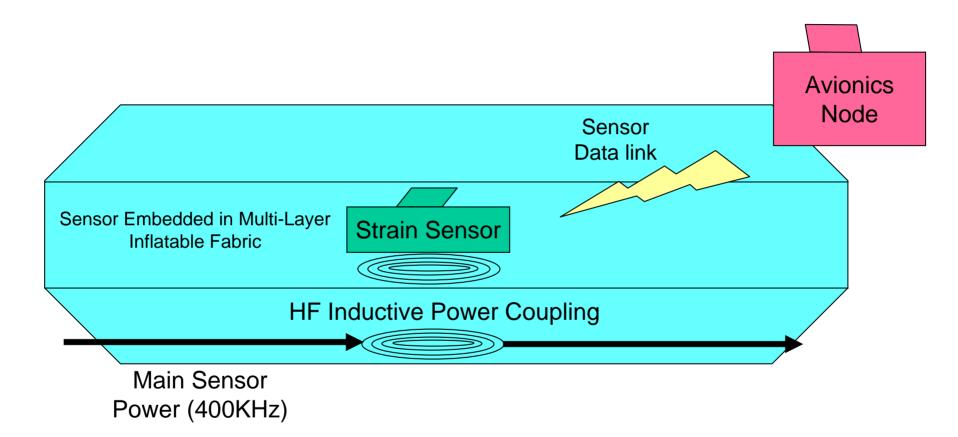

Modular Collaborative Avionics (MCA)

- Many nodes provide time synchronous commands to smart controllers and actuators
- Plurality-based voting by smart controllers provides high confidence margin
- System relies on computation and mesh data communication performance that are orders of magnitude beyond that required for spacecraft control
 - Allows implementation of complex time synchronization and critical decision-making algorithms
 - Allows facile reconfiguration for fault tolerance
- Nodes reconfigure their functions based on required operations, current status and sensor data availability
 - Use IMA partitions to host rapidly-reconfigurable software processes
 - IMA's temporal and spatial partitioning of processes is key

MCA Architecture – Structural Health Example

MCA Design Challenges

- Integration of multiple functions in cost-effective and mass/volume/power-effective way
- Optimization of functional complement
 - Homogeneous vs heterogeneous modules
 - Handover or integration of operational functions
- Radiation and environmental tolerance
- Design of power distribution methods
 - Cable plant
 - Wireless backup methods (inductive, optical, RF etc.)
- Integration of multiple RF systems
- Algorithms for collaborative control


Power Generation and Transmission

- Flexible embedded solar panels on exterior
 - If sufficient area is covered, then no need for pointing
 - Must develop very light-weight, thin, low-cost flexible solar cells
- Baseline cables, with backup batteries for reliability
- Magnetic inductive power transmission for sensors and other low-power loads
- Use high-frequency switching power supply technology to provide "through the fabric" power transmission.
 - Eliminates all physical feedthroughs which compromises reliability
 - Can be highly-efficient and part of avionics nodes

Wireless Structural Sensor Diagram

General Recommendations

- Inflatable spacecraft provide many advantages but will require development of innovative sensing, data and power transmission and deployment technologies.
- Modular avionics can significantly aid the development of inflatable spacecraft systems
 - Can be active and move with fabric during stowage, deployment and operational phases
 - Provides distribution for power, data sensing and control, which follows the deployment profile
 - Allows other innovations in collaborative computing function
- Wireless sensors enable effective inflatable health monitoring
 - Power provided via inductive coupling no feed throughs
 - Data provided via multiple wireless connections allowing connection to multiple avionics nodes
 - Provides high degree of connection reliability
 - System can reconfigure dynamically for load balancing and fault tolerance

